1) Power of Three

Given an integer n, return true if it is a power of three. Otherwise, return false.

An integer n is a power of three, if there exists an integer x such that n == 3^x.

Example 1:

Input: n = 27
Output: true
Explanation: 27 = 3^3

Example 2:

Input: n = 0
Output: false
Explanation: There is no x where 3^x = 0.

Example 3:

Input: n = -1
Output: false
Explanation: There is no x where 3^x = (-1).

Constraints:

  • -2^31 <= n <= 2^31 - 1

2) Remove Nodes From Linked List

You are given the head of a linked list.

Remove every node which has a node with a greater value anywhere to the right side of it.

Return the head of the modified linked list.

Example 1:

Input: head = [5,2,13,3,8]
Output: [13,8]
Explanation: The nodes that should be removed are 5, 2 and 3.
- Node 13 is to the right of node 5.
- Node 13 is to the right of node 2.
- Node 8 is to the right of node 3.

Example 2:

Input: head = [1,1,1,1]
Output: [1,1,1,1]
Explanation: Every node has value 1, so no nodes are removed.

Constraints:

  • The number of the nodes in the given list is in the range [1, 10^5].
  • 1 <= Node.val <= 10^5

3) Number of Islands

Given an m x n 2D binary grid grid which represents a map of '1's (land) and '0's (water), return the number of islands.

An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water.

Example 1:

Input: grid = [
  ["1","1","1","1","0"],
  ["1","1","0","1","0"],
  ["1","1","0","0","0"],
  ["0","0","0","0","0"]
]
Output: 1

Example 2:

Input: grid = [
  ["1","1","0","0","0"],
  ["1","1","0","0","0"],
  ["0","0","1","0","0"],
  ["0","0","0","1","1"]
]
Output: 3

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 300
  • grid[i][j] is '0' or '1'.

4) Add Two Numbers

You are given two non-empty linked lists representing two non-negative integers. The digits are stored in reverse order, and each of their nodes contains a single digit. Add the two numbers and return the sum as a linked list.

You may assume the two numbers do not contain any leading zero, except the number 0 itself.

Example 1:

Input: l1 = [2,4,3], l2 = [5,6,4]
Output: [7,0,8]
Explanation: 342 + 465 = 807.

Example 2:

Input: l1 = [0], l2 = [0]
Output: [0]

Example 3:

Input: l1 = [9,9,9,9,9,9,9], l2 = [9,9,9,9]
Output: [8,9,9,9,0,0,0,1]

Constraints:

  • The number of nodes in each linked list is in the range [1, 100].
  • 0 <= Node.val <= 9
  • It is guaranteed that the list represents a number that does not have leading zeros.